The University of Southampton

UK Food in a climate crisis?

British food security is under threat due to Climate change.

If you haven’t heard of ‘climate change’ you‘ve either been living under a rock for the last 30 years or getting yourself elected as leader the free world. But not much has changed, Winter’s a little warmer, summer’s a little wetter? We’ve heard of extreme weather conditions in some far corners of the globe but unless you’ve been planning a trip there, it’s unlikely to affect our everyday lives. But behind supermarkets sliding doors lurks a real peril, one directly impacting Britons at their most vulnerable part, our Achilles heel, our pockets. As crop production is jeopardised, already inflated prices are set to rise, correlating with the environmental changes induced by human pollution (Lobell, 2007).

Figure 1. A familiar slight, well stocked fruit and veg for public consumption. But for how long? (WordShore (flickr), 2016)
Figure 1. A familiar slight, well stocked fruit and veg for public consumption. But for how long? (WordShore (flickr), 2016)

Food security is perhaps the most important commodity provided by the planet. At a glance the effects of climate change, seem on the whole, to be exactly what farmers are looking for in terms of improving yield from their crops. It’s wet, hot, there’s more CO2, more decomposition and available nutrients, just what plants need right? But this is not always the case, although higher CO2 levels does stimulate plant growth, it is counteracted by the increase in temperature and ozone, a molecule with harmful effects on plant tissue(Hogsett, et al 1997). Warming decreases the quality of the crops produced, grains are less dense and seeds contain less oil, as well as favouring growth and proliferation of weeds into new areas, due to the differences in how they photosynthesise (Fuhrer, 2003. Martre, 2017).

Figure 2. The graph from DEFRA (Department for Environmental Food and Rural Affairs) shows billions of pounds worth of imported food, especially fruit and vegetables. (Source: DEFRA Food Statistics Pocketbook 2016)
Figure 2. This graph from DEFRA (Department for Environmental Food and Rural Affairs) shows billions of pounds worth of imported food, especially fruit and vegetables. (Source: DEFRA Food Statistics Pocketbook 2016)

It is no secret that as a nation we currently import almost half of our food and animal feed from overseas (Ruiter et al 2015). In response to huge population increases of 3 Million on average every decade since the baby boomers of the 50s(Humby, 2016) and market for year-round exotic produce. But tropical regions are likely to suffer much more, even a slight temperature increase interfering with developmental and growth processes beyond already stretched thresholds, meaning production in these areas will fall hugely(Challinor, 2008). Excess precipitation, effectively drowning roots and drought adding another uncertain dimension to the mix(Amedie, 2013).

“[In staples like wheat, maize and barley] warming has resulted in annual combined losses of $5 billion per year, as of 2002” -Lobell, 2007

Environmental change is going to effect everyone in one way or another, we rely on plants for food, clothing, oxygen, medicine and much more. Prices of everyday commodities reflect the quantity and quality of production processes. The result is innumerable aspects of our lives being changed, in some way by the unsustainable practices we are complicit to on a daily basis(Lepetz et al., 2009).

Research into genetic modification of crop plants provides some relief in the challenges ahead, improving crop plant coping mechanisms and yield potential (Martre et al 2017), as well as a decrease in the consumption of animal products due to their high carbon footprint and inefficiency(Ruiter et al 2015). For now it will be a 4p increase in a farmhouse loaf and 10p extra for sunflower oil, but immediate action is necessary to prevent a large-scale food shortage in the near future.

[500 words]

References:

Amedie, F.A., (2013). Impacts of Climate Change on Plant Growth, Ecosystem Services, Biodiversity, and Potential Adaptation Measure. , pp.1–61.

Challinor, A.J. & Wheeler, T.R., (2008). Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agricultural and Forest Meteorology, 148(3), pp.343–356.

Fuhrer, J., (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97(1–3), pp.1–20.

Hogsett, W.E., J.E. Weber, D. Tingey, A. Herstrom, E.H. Lee and J.A. Laurence. (1997). An approach for characterizing tropospheric ozone risk to forests. Environmental Management 21:105-120.

Humby, P. (2016). Overview of the UK population: February 2016. [ONLINE] Available at: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/february2016. [Accessed 13 March 2017].

Lepetz V., Massot, M. & Schmeller, D.S., & Clobert, J., (2009). Biodiversity monitoring: some proposals to adequately study species’ responses to climate change. Biodiversity and Conservation 18, 3185- 3203

Lobell, D.B. & Field, C.B., (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), p.14002.

Martre, P., Yin, X. & Ewert, F., (2017). Modeling crops from genotype to phenotype in a changing climate. Field Crops Research, 202, pp.1–4. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0378429017300242.

Ruiter, H. de et al., (2015). Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. Journal of The Royal Society Interface, 13(114). Available at: http://rsif.royalsocietypublishing.org/content/13/114/20151001.abstract.

WordShore (flickr), (2016), Fruit (WordShore)[ONLINE]. Available at: https://hiveminer.com/Tags/hebrides,solas [Accessed 15 March 2017].





Could Climate Change STARVE us?

The planet needs YOUR help!

We all have been alarmed and warned about rising sea temperatures, melting sea ice and glaciers, but the main problem is that we could describe them on and on.. Therefore, one of the greatest challenges the earth faces in this day and age is CLIMATE CHANGE.

A photo to show the loss of vegetation as a result of climate change (http://ayalim.org/israeli-plant-species-resistant-to-climate-change/)
A photo to show the loss of vegetation as a result of climate change  Available at:(http://ayalim.org/israeli-plant-species-resistant-to-climate-change/)

An unprecedented in atmospheric CO2 and temperature can shockingly lead to:

  • Species extinction
  • Collapsing ecosystems and food chains and as a result, foreseeable shortages of food and water to the increasing global population.

One of the toughest tasks this century, is predicting the response of plants to global climate change. Thus, what is essentially happening to our plants through this unpredictable change?

Many studies have observed:

Plants will thrive with an established elevation in CO2 and temperature…

  • As more CO2 = more fixation = more photosynthesis

Bisgrove and Hadley (2002) suggest that a “doubling in carbon dioxide level can increase plant growth by as much as 50%”

  • More heat = advanced growth and seed germination

 

HOWEVER…

Agriculture sustains almost all life-forms on Earth, meaning adverse conditions, can restrict crop plants in reaching their full genetic potential of producing a high yield (Anjum et al., 2014).

(1) Heat waves, extreme temperature events are projected to become more intense, more frequent and longer lasting to what is currently been observed in recent years (Hatfield and Prueger, 2015). Consequently, when a drought occurs where the levels of heat are extreme, the growth of a plant will rapidly decrease due to the high level of moisture loss. Furthermore, although water is essential for the functioning of virtually every plant on the planet, too much water (as a result of a storm… which we all can undeniably find exciting!) can in fact reduce the amount of oxygen in the soil, making a plant more susceptible to disease.

NOTE: Remember to stop and think, ‘this storm is not only damaging our plants, but in fact our livelihoods!’

(2) In addition, there is abundant evidence that in the long term, plants will begin to acclimate to a rise in CO2 levels. Therefore, the photosynthetic capacity becomes inhibited due to the plants being unable to utilise the additional carbohydrate that is accompanied with photosynthesis (Drake et al., 1997).

(3) Shockingly, crops of the future that are grown in a high- CO2 environment, will have decreases in the concentrations of zinc, iron and protein in grains of wheat, barley and rice (Myers et al., 2014) meaning the food in which we eat will be much less nutritious. Considering most people depend on these grains for their source of zinc and iron this can be detrimental to human health.

percentage
A graph to show the result in % reduction of nutrients from certain crops in an expected level of CO2 by 2050. (Source: NATURE)

 

If we continue to actively contribute to a world of increasing CO2 and temperature, not only are the plants on our Earth disturbed but if you stop and think: YOU yourself can be hugely affected.

A question of thought, who knows what this may cause to our future health and livelihoods?

 

 

References:

  • Anjum, N., Gill, S. and Gill, R. (2014). Plant adaptation to environmental change. 1st ed. Wallingford: CABI.
  • Bisgrove, R. and Hadley, P. (2002) Gardening in the Global Greenhouse: The Impacts of Climate Change on Gardens in the UK. Technical Report. Oxford: UKCIP.
  • Drake, B., Gonzalez-Meler, M. and Long, S. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2?. Annual Review of Plant Physiology and Plant Molecular Biology. 48(1), pp.609-639.
  • Hatfield, J. and Prueger, J. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, pp.4-10.
  • Myers, S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A., Bloom, A., Carlisle, E., Dietterich, L., Fitzgerald, G., Hasegawa, T., Holbrook, N., Nelson, R., Ottman, M., Raboy, V., Sakai, H., Sartor, K., Schwartz, J., Seneweera S., Tausz, M. and Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), pp.139-142.

Word Count: 492