The University of Southampton

Rise of the planet of the grapes: climate change through rosé-tinted glasses?

 

images
Source: French Country Wines

Chardonnay, Ortega, Pinot Noir…the UK produces over 5 million bottles of wine a year (English Wine Producers, 2015). But given the changes in climate occurring across the globe, this production is said to be on the up.

An increasingly hot topic in the media, the numerous negative consequences of global warming such as extreme weather events and rising sea levels are oftendiscussed. However, the resultant increases in average annual temperature and atmospheric CO2 concentrations have opened a window of opportunity for the UK wine industry. This increased wine production in England and Wales is now touted as the unexpected silver lining to climate change’s storm cloud.

With a predicted temperature increase of 2.2 degrees Celsius in the UK by 2100 (MetOffice, 2011), the success of grape varieties in Britain is a perfect example of the ways in which global environmental change can impact plant function.

Climate is a critical factor in viticulture (the growing of wine grapes) and increased levels of atmospheric CO2 have been shown to increase plant growth (Jakobsen et al. 2016). Bindi et al (2001) found that elevated atmospheric CO2 levels had a significant effect on the grapevine Vitis vinifera total fruit weight, leading to an increase in biomass of up to 45%. This is also the case for many other crop and wild plant species with 79 species reviewed by Jablonski et al (2002) producing more flowers, more seeds and a greater total mass.

This increased growth in response to elevated atmospheric CO2 can be attributed to plants fixing the CO2 through photosynthesis – the process through which plants produce glucose from carbon dioxide and water. Increased abundance of CO2 in the atmosphere leads to increased carbon fixation and hence more growth (Drake et al. 1997). As global warming trends continue, it is expected that many crops will exhibit increased growth rates as CO2 conditions become increasingly favourable.

However, whilst viticulture in the UK are experiencing a boom, vineyards elsewhere are struggling. For example, many grape varieties in Australia are no longer able to grow due to ongoing environmental change (Mozell & Thach, 2014). This is partly because whilst the atmospheric CO2 increase occurring is favourable for many crops, other factors such as temperature increase are not.

Temperature is a major determinant of plant development and can lead to reduced yield in crops by shortening the plants’ development stages (Craufurd &Wheeler, 2009). Increased temperatures can also vastly reduce the land area suitable for the growth of certain crops (Hannah et al, 2013). This reflects the reality of Australian viticulture at present and represents a threat to the future of many other crop species.

Ultimately, “wine grape production provides a good test case for measuring indirect impacts […] because viticulture is sensitive to climate” (Hannah et al, 2013). As such, it is important to continue investigating the impacts of environmental change on plants as it is possible that the success of viticulture in the UK represents the rise before the fall.

[497 words]

References:

Bindi, M., Fibbi, L. and Miglietta, F., 2001. Free Air CO 2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO 2 concentrations. European Journal of Agronomy14(2), pp.145-155.

Craufurd, P.Q. and Wheeler, T.R., 2009. Climate change and the flowering time of annual crops. Journal of Experimental Botany60(9), pp.2529-2539.

Drake, B.G., Gonzàlez-Meler, M.A. and Long, S.P., 1997. More efficient plants: a consequence of rising atmospheric CO2?. Annual review of plant biology48(1), pp.609-639.

English Wine Producers, 2015. English Wine Industry: Statistics, Facts and Figures. Available online at http://www.englishwineproducers.co.uk/background/stats/ [Accessed 17th March 2017]

Hannah, L., Roehrdanz, P.R., Ikegami, M., Shepard, A.V., Shaw, M.R., Tabor, G., Zhi, L., Marquet, P.A. and Hijmans, R.J., 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences110(17), pp.6907-6912.

Jablonski, L.M., Wang, X. and Curtis, P.S., 2002. Plant reproduction under elevated CO2 conditions: a meta‐analysis of reports on 79 crop and wild species. New Phytologist156(1), pp.9-26.

Jakobsen, I., Smith, S.E., Smith, F.A., Watts-Williams, S.J., Clausen, S.S. and Grønlund, M., 2016. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. Journal of experimental botany67(21), pp.6173-6186.

MetOffice, 2011. Climate: Observations, projections and impacts. United Kingdom [PDF]. Available online at http://www.metoffice.gov.uk/media/pdf/t/r/UK.pdf [Accessed 17th March 2017]

Mozell, M.R. and Thach, L., 2014. The impact of climate change on the global wine industry: Challenges & solutions. Wine Economics and Policy3(2), pp.81-89.





Plants – The Power of Adaptation in the Fight Against Climate Change

The adaptive power of plants could be crucial in sustaining the future of our planet! (Source: About Lifting)
The adaptive power of plants could be crucial in sustaining the future of our planet!
(Source: Aboutlifting.com)

 

From giant redwoods to small bonsai trees, all plants are bracing for a future of increasing global CO2 emissions.

FACT! In 2015, we as humans pumped out 36.3 GIGATONNES of CO2 into our atmosphere (GCP, 2016).

The Dilemma: Though rising atmospheric CO2 is almost always seen as a bad thing, the astute readers among you may ask: “isn’t that a good thing for plants, seeing as how they need CO2 to photosynthesise (convert CO2 gas into sugar for food)?”

The answer is a bit more complex than yes or no.

Studies have shown that in the short-term, increased CO2 concentrations:

  • Improve the efficiency of plant water use (Drake et al., 1997).
  • Increase the rates of photosynthesis (Drake et al. 1997).
  • Increase plant growth and productivity (Raschi et al., 1997).

 

… But.

Over longer timescales (days to weeks), the photosynthetic capabilities of plants can decrease because of a process called ACCLIMATISATION. To put it briefly, acclimatisation is when there is a build-up of leaf carbohydrates, such as sugars and starch, which triggers a decrease in the amount of RUBISCO enzyme (the enzyme responsible for upholding photosynthesis) in plants (Cheng et al., 1998).

Is the future all DOOM and GLOOM?

Encouragingly, the future looks somewhat optimistic…

A study using natural springs, which already emit high concentrations of CO2, found that over multiple generations, the “spring” plants that live there have become adapted to the elevated CO2 concentrations we can expect in the future, through the power of GENE EXPRESSION (Watson-Lazowski et al., 2016).

 

“Spring” and “non-spring” Plantago lanceolata plants from the Bossoleto natural spring in Italy. (Source: Herbalism)
“Spring” and “non-spring” Plantago lanceolata plants from the Bossoleto natural spring in Italy.
(Source: dspermaculture.wordpress.com)

 

Interestingly, the populations of “spring” and “non-spring/control” plants were genetically identical but over 800 genes were expressed differently between the two. Gene expression is kind of like a plug switch, genes can be turned on or off depending on the plant’s needs in order better suit its environment; it is thought that CO2 was directly regulating these changes in gene expression (Watson-Lazowski et al., 2016).

Differences in gene expression resulted in “spring” plants NOT BECOMING ACCLIMATISED to elevated CO2 conditions. In fact, the “spring” plants were able to photosynthetically fix carbon faster and produce larger carbon pools, they then used this additional carbon to enhance their growth through greater respiration (release of energy from carbon) (Watson-Lazowski et al., 2016).

Gene expression also caused the “spring” plants to increase their STOMATA (leaf pores used for gas exchange) index by 5.2% in elevated CO2 conditions, perhaps as an adaptive response (Watson-Lazowski et al., 2016). This contradicts previous studies that predict stomata numbers should have decreased.

What does this mean?

Well, it means that ability of plants to change their gene expression could be the underlying factor that enables future generations to adapt to rising atmospheric CO2. Questions as to whether this stark change in gene expression is capable in all plants and whether it is enough to enable them to fully adapt to future CO2 concentrations is yet to be tested; but this study shows that in the battle against climate change, plants may have a fighting chance!

References:

  1. CHENG, S. MOORE, B. & SEEMAN, J. (1998) Effects of short- and long-term elevated COon the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. American Society of Plant Physiologists. 116 (2). pp. 715-723.
  2. DRAKE, B. GONZALEZ-MELER, M. & LONG, S. (1997) More efficient plants: a consequence of rising atmospheric CO2. Annual Review of Plant Physiology & Plant Molecular Biology. 48. pp. 609-639.
  3. GLOBAL CARBON PROJECT, 2016. Global Carbon Budget. [pdf] Futurearth. Available at: http://www.globalcarbonproject.org/carbonbudget/16/files/GCP_CarbonBudget_2016.pdf.
  4. RASCHI, A. MIGLIETTA, F. TOGNETTI, R. & VAN GARDINGEN, P. (1997) Plant Responses to Elevated CO2: Evidence from Natural Springs. New York: Cambridge University Press.
  5. WATSON-LAZOWSKI, A. LIN, Y. MIGLIETTA, F. EDWARDS, R. CHAPMAN, M. & TAYLOR, G. (2016) Plant adaptation or acclimation to rising CO2? Insight from first multi-generational RNA-Seq transcriptome. Global Change Biology. 22 (11). pp. 3760 – 3773.

 

Word Count: 498

 





Turmoil in the Tundra: the Cold Hard Truth

A harsh, cold land with no tree cover, temperatures averaging between -12 to -6 degrees Celsius, and enveloped in snow for the majority of the year (National Geographic, 2017).

Until the brief summer months bring warmth and plains become decorated with swathes of wildflowers. This is the tundra biome.

 

screen-shot-2017-03-22-at-22-35-14

                                        Figure 1: Arctic animals

 

A home to many endearing (and endangered) animals like the Arctic fox, snowy owl, lemmings and grey-wolves (Figure 1) (National Geographic, 2017). But why should we care about some cold desolate place? The answer is simple yet complicated.

It comes down to the ever looming climate change disaster. The Arctic tundra has been recognised as one of the most vulnerable biomes to environmental change. Permafrost (permanently frozen ground) covers much of the tundra, with the top 30cm or so of it melting and refreezing with the changing seasons (NOAA, 2017). However, in the last few decades increasing global temperatures, and human developments have lead to more melting. This can have a negative effect on the ecosystem as the more permafrost that’s melted, along with the later arrival of the autumn freeze time means that shrubs and other vegetation, that couldn’t take root before, can now grow, potentially altering the habitat (Heijmans et al 2016).

screen-shot-2017-03-22-at-21-44-41

Figure 2. Different types of interactions within an Arctic tundra ecosystem. Solid lines = consumption between predator and prey between trophic levels (different parts of the food web Dotted lines = interaction between species in the same trophic level (same part of the food web) (Ims and Fuglei, 2005).

 

Northward expansion of Low Arctic trees and shrubs has been seen due to the warmer temperatures and longer growing seasons. This has other ecological consequences, like change in the biodiversity of an area if new species are introduced (Post et al., 2009). Overall ecosystem structure change has been recorded in multiple studies, including interaction between animal species (Hobbie et al 2017).

Although they may be cute and fluffy Arctic foxes are one of the key species within Arctic tundra ecosystems because they are a top predator, meaning they help control herbivore populations (Figure 2). It’s been seen that where abandoned Arctic fox dens are found, the productivity of that area (i.e. plant growth, number of insect and herbivores etc.) has increased (Killengreen et al., 2007).

A study by Ims and Fuglei, (2005) has shown that lemmings are also key players in the Arctic tundra. These rodents are a key prey species for a number of predators that rely on certain densities of lemming populations to allow them to reproduce, as they need sufficient amount of food. Lemmings breed during the winter season and undergo growth under the snow, leading to a peak in population density in spring. This means that with predicted warmer winters (hence less snow, and more rain) lemming peak times are very likely to alter, with population peaks happening during autumn (Putkonen and Roe, 2003). A change in the number of prey available, will impact predator numbers. Arctic fox and snowy owl numbers are likely to decrease as they will have lower reproductive rates during years when peak lemming populations occur autumn.

A change in the relationships between key species like this can have unprecedented effects on their communities and ecosystems. With a grim future ahead for cold-loving animals and ecosystems.

 

 

References

National Geographic, (2017). Explore the World’s Tundra. Available at: http://www.nationalgeographic.com/environment/habitats/tundra-biome/ [Accessed 17 Mar. 2017].

NOAA (2017). Arctic Change – Land: Permafrost. Available at: https://www.pmel.noaa.gov/arctic-zone/detect/land-permafrost.shtml [Accessed 17 Mar. 2017].

Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., … & Ims, R. A. (2009). Ecological dynamics across the Arctic associated with recent climate change. Science, 325(5946), 1355-1358.

Ims, R. A., & Fuglei, E. V. A. (2005). Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience, 55(4), 311-322.

Killengreen, S. T., Ims, R. A., Yoccoz, N. G., Bråthen, K. A., Henden, J. A., & Schott, T. (2007). Structural characteristics of a low Arctic tundra ecosystem and the retreat of the Arctic fox. Biological Conservation, 135(4), 459-472.

Putkonen J, Roe G. 2003. Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophysical Research Letters 30: 1188.

Heijmans, M. M. P. D., van Huissteden, J., Li, B., Wang, P., Limpens, J., Berendse, F., & Maximov, T. C. (2016). Can wet summers trigger permafrost collapse at a Siberian lowland tundra site?. INTERNATIONAL CONFERENCE ON PERMAFROST, 2016-06-20/2016-06-24

Hobbie, J. E., Shaver, G. R., Rastetter, E. B., Cherry, J. E., Goetz, S. J., Guay, K. C., … & Kling, G. W. (2017). Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio, 46(1), 160-173.

 

Word count [496]

 

 

 





Why those holiday snaps may never look the same again….

From Sunday night Attenborough documentaries, to gap year photos from people you haven’t seen for years, we’re becoming increasingly informed about the world around us, enticing us to explore.

The Great Barrier Reef stretching the Queensland coastline is such a vast natural spectacle it can be seen from space. This complex ecosystem is home to over 450 types of coral and provides a habitat for marine creatures ranging from tropical fish to turtles (1), making it a popular holiday destination but for how much longer?

Lizard Island, Luxury Lodges of Australia, Queensland
Unbleached Coral reef community. Queensland (2)

This beautiful system is under threat from rising sea temperatures, putting stress upon the corals causing them to release the algae from their tissues leaving only ghostly white calcium skeletons remaining. Both the coral and the algae rely on their partnership for energy and safety.

These ‘bleached’ corals are unsustainable and will perish within weeks if the sea temperature fails to return to within tolerable ranges. Due to the certainty of rising ocean temperatures, restoration success is unlikely and the devastation likely to continue. (1)

Once a year the reef engages in mass reproduction, triggered by temperature and the lunar cycle, this supports continued reef biodiversity as well as providing an ample source of food for reef dwellers. A shift in the temperature cues for reproduction will have severe impacts on community biodiversity as compared to natural incidents global shifts cause a greater long term impact, reducing the possibility of recovery (3).

exclusive-coral-bleaching-in-new-caledonia2-1120x747
Coral bleaching event. Picture credit- The Ocean Agency / XL Catlin Seaview Survey / Richard Vevers  (4)

Environmental change that impacts the structure of the corals will also affect their functional ability within the community. (5) Corals provide shelter for many marine species, allow for protected migration and increased genetic flow through coral corridors.  This change alter the community structure and exasperate the global mass extinction we are currently experiencing.

So what is actually happening?

Global activities are impacting the future of this system dramatically, through climate change and our ever-increasing carbon footprint.

Corals extract calcium carbonate (the substance that forms eggshells) from the surrounding sea water to build the reef, using energy utilized from the algae within their structures. Each species builds differently to give beautifully diverse reefs, supporting creatures from zooplankton to green turtles.

Increasing atmospheric CO2, is absorbed by the oceans where its combined with seawater to produce an acid, leading to ocean acidification. This reduces the concentration of carbonate ions available for use by the corals to build their structures. (6)

These global changes aren’t the only driver of community shifts. On a local scale, flooding in Queensland has caused sediment and pesticide run off into the oceans. This increased nutrient input is devastating to a system reliant on diversity (7,8),  where some species are more susceptible to change than others, causing a decline in both population density and biodiversity.

So our holiday snaps might never look the same again… To mitigate this change we need to alter our way of life, just travelling to see them impacts their survival! But keep snapping and keep people talking, its the only way we are going to make change!

 

5.8 tonnes of COis released per person during a flight from London to Darwin Australia!! 

Flight # Details: Tonnes CO2
1 Return From London Gatwick to Darwin Australia 1 passenger 5.8

 

[500 Words]

 

References

  1. Australia’s Coral Reefs under Threat from Climate Change by Lesley Hughes, Will Steffen and Martin Rice (Climate Council of Australia).
  2. Great Barrier Reef | Australia’s Great Natural Wonder”. Great Barrier Reef. (2017). 21 Mar. 2017.
  3. Nyström, M., Folke, C., & Moberg, F. (2000). Coral reef disturbance and resilience in a human-dominated environment.Trends in Ecology & Evolution15(10), 413-417.
  4. The Ocean Agency. 2016. THE 3RD GLOBAL CORAL BLEACHING EVENT – 2014/2017. Available at: http://www.globalcoralbleaching.org/#essential-facts. [Accessed 21 March 2017].
  5. Richmond, R. H. (1993). Coral reefs: present problems and future concerns resulting from anthropogenic disturbance.American Zoologist33(6), 524-536.
  6. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., & Knowlton, N. (2007). Coral reefs under rapid climate change and ocean acidification.science318(5857), 1737-1742.
  7. Mongin, M., Baird, M. E., Tilbrook, B., Matear, R. J., Lenton, A., Herzfeld, M., & Duarte, C. M. (2016). The exposure of the Great Barrier Reef to ocean acidification.Nature communications7.
  8. Dubinsky, Z. V. Y., & Stambler, N. (1996). Marine pollution and coral reefs.Global change biology2(6), 511-526.




Climate change even sets plants up to compete

It is well known that plants photosynthesize and use carbon dioxide to produce energy and oxygen. But did you know that different photosynthetic pathways might have a huge impact on how plants will react to climate change? Continue reading “Climate change even sets plants up to compete”





Plants in Elevated CO2: Stimulated Photosynthesis, Good News or Bad News?

Climate change, I believe people are familiar with this word, although some of them may not believe it, it is the truth that is happening right now.

Since the Industrial Revolution, a large amount of CO2 has been released into the atmosphere due to the burning of fossil fuel. Human has obtained great development from Industrial Revolution and we are living a better life. However, the increasing concentration of CO2 in the atmosphere is warming our planet! We already know that the high temperature, extreme weather and sea level rise are the horrible consequences of climate change, but what about the impacts on plants?

Plants are the major terrestrial carbon sink. They absorb CO2 and water as raw materials, use sunlight as the energy source, release O2 and store sugars in organs as products, which support the plant growth and fix carbon in the wood and leaves. This process happens in the tiny chloroplast inside the cells of leaves and is called photosynthesis, which is a crucial chemical reaction on the earth, as oxygen is essential to human life.

The process of Photosynthesis

The process of Photosynthesis. (Patrickodonkor, 2017)

It seems that the increasing atmospheric concentration of CO2 provides the plants more CO2 input. Will it stimulate the photosynthesis process of plants? Probably. Some studies show that plants increase the photosynthesis rate in the elevated CO2 concentration, and especially, more evidence is found for the C3 plants (plants grow in the cool, wet climate) (Kirschbaum, 2004).

Although the plants may be happy with taking in more carbon for their growth and development, the Rubisco, which is the most abundant protein playing a role in the photosynthesis, seems unhappy with the elevated CO2. The activity of Rubisco decreases, and the Rubisco content shows a 20% drop in the elevated CO2 condition (Long et al., 2004). Such change is the acclimation of plants to the changing environmental condition, and the elevated CO2 decreases the photosynthesis capacity in long term.

However, even with the acclimation of photosynthesis capability, significant enhancement of carbon uptake has been found in the Free-Air Carbon dioxide Enrichment (FACE) studies of plants grow in the exposure to the CO2 concentration of estimated mid-century scenario (Leakey et al., 2009). This may be a good news, as the plants absorb more CO2, they can somewhat offset the greenhouse emissions and slow down the climate change. Moreover, the dry matter production and seed yield of C3 plants also slightly increased, although it is not as significant as the increase of carbon uptake (Long et al., 2004).

Another general finding of plant’s response to elevated CO2 is the increasing nitrogen use efficiency of photosynthesis. As the Rubisco decreases, less nitrogen is needed and the C: N ratio increases (Drake, Gonzàlez-Meler and Long, 1997). That is to say, the elevated CO2 reduce the nitrogen content in plant tissue and thus fewer nutrients are provided by the plants (Cotrufo, Ineson and Scott, 1998). People have to consume more food than before to obtain the same amount of nutrients!

Can you accept this trade off?

[493 words]

 

Reference

  • Cotrufo, M., Ineson, P. and Scott, A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4(1), pp.43-54.
  • Drake, B., Gonzàlez-Meler, M. and Long, S. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2?. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), pp.609-639.
  • Kirschbaum, M. (2004). Direct and Indirect Climate Change Effects on Photosynthesis and Transpiration. Plant Biology, 6(3), pp.242-253.
  • Leakey, A., Ainsworth, E., Bernacchi, C., Rogers, A., Long, S. and Ort, D. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60(10), pp.2859-2876.
  • Long, S., Ainsworth, E., Rogers, A. and Ort, D. (2004). RISING ATMOSPHERIC CARBON DIOXIDE: Plants FACE the Future. Annual Review of Plant Biology, 55(1), pp.591-628.
  • Patrickodonkor, (2017). Process of photosynthesis. [online] YouTube. Available at: https://www.youtube.com/watch?v=krat2mnM1M0 [Accessed 19 Mar. 2017].




Humanity must stop neglecting changes in Seagrass Meadows before disaster?

Seagrass meadows are a vital habitat and food source for many endangered species but these crucial habitats are under threat from environmental change caused by human impacts climate change, coastal developments, fishing and aquaculture (Waycott etal, 2009).

Figure 1- Manatee feeding on seagrass (USGS, 2016)
Figure 1- Manatee feeding on seagrass (USGS, 2016)

Climate Change

Climate change will cause a wide variety of impacts on the oceans which will effect seagrasses increasing water temperatures will lead to increased instances of seagrass die off, ocean acidification caused damaged to the cells plants require to photosynthesize and grow (Repolho et al, 2017).

As seagrass requires shallow habitats as sea levels rise there will be a loss of seagrass in deeper areas of their range seagrasses will move shoreward this trend is similar to trends that are being seen from increased amounts of sediments within the water as they will lack the sunlight to photsynthesise (Davis et al, 2016).

Coastal Developments

The construction of ports, artificial beaches and the reclamation of land, the adding of material to the water to fill in the area, this leads to more sediments within the water. The increased amount of sediments in the water can lead to seagrass beds being completely buried by the sediment and stopping plants from photosynthesising which it needs to survive, during the construction of the Pointe-Rouge Harbour over 68ha of seagrasses were lost due to water sediment and 11ha destroyed by construction (Boudouresque et al, 2009).

Figure 2- The Light grey shows dead seagrass and the dark grey living seagrass after the laying of a cable between two islands in the South of France (Boudouresque et al, 2009)
Figure 2- The Light grey shows dead seagrass and the dark grey living seagrass after the laying of a cable between two islands in the South of France (Boudouresque et al, 2009)

 

Fishing and Aquaculture

A trawler can uproot between 99,000-363,000 shoots during a trawl and in some areas of the Mediterranean over 80% of the seagrass meadows have been destroyed due to trawling (Boudouresque et al, 2009). Aquaculture, mainly fish farms, can cause a process called eutrophication, an excessive increase in nutrients heading into a body of water leading to high algal growth, because of the nutrients from uneaten food and excretion from the fish as it is focussed in one area around the fish farm this causes the reduction in size of the plants in the area due to reduced light reaching the plants, leading to a regression of the plants in the areas around fish farms (Ruiz et al, 2001).

pic-3
Figure 3- Changes in seagrass area by coastlines and in most coastlines more studies report a decrease (Waycott et al, 2009).

Future of Endangered Species

Dugongs, sea turtles and manatees all directly depend upon seagrass in many tropical regions for food and with decreases in seagrass globally, figure 3, they is likely to be further pressure put onto these already endangered species (Waycott et al, 2009), and if humanity does not take steps to solving the problems mentioned here the future of these iconic species is in real danger.

 

 

Reference List

Boudouresque, C., Bernard, G., Pergent, G., Shili, A., Verlaque, M., (2009), Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review, Botanica Marina, 52, 395-418

Davis, T., Harasti, D., Smith, S., Kelaher., (2016), Using modelling to predict impacts of sea level rise and increased turbidity on seagrass distributions in estuarine embayments, Estuarine, Coastal and Shelf Science, 181, 294-301

Repolho, T., Duarte, B., Dionísio, G., Paula, J., Lopes, A., Rosa, I., Grilo, T., Caçador, I., Calado, R. and Rosa, R. (2017). Seagrass ecophysiological performance under ocean warming and acidification. Scientific Reports, 7, p.41443.

Ruiz, J., Perez, M., Romero, J., (2001), Effects of Fish Farm Loadings on Seagrass (Posidonia oceanica) Distribution, Growth and Photosynthesis, Marine pollution bulletin, 42(9), 749-760

USGS, (2016). Manatees [online] Available at: https://www.usgs.gov/centers/wetland-and-aquatic-research-center-warc/science-topics/manatees [Accessed 20 Mar. 2017].

Waycott, M., Duarte, C., Carruthers, T., Orth, R., Dennison, W., Olyarnik, S., Calladine, A., Fourqurean, J., Heck, K., Hughes, A., Kendrick, G., Kenworthy, W., Short, F. and Williams, S., (2009). Accelerating loss of sea grass across the globe threatens coastal ecosystems,. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 106(30), 12377-12381

 

Word Count – 489

 

 

 





UK Food in a climate crisis?

British food security is under threat due to Climate change.

If you haven’t heard of ‘climate change’ you‘ve either been living under a rock for the last 30 years or getting yourself elected as leader the free world. But not much has changed, Winter’s a little warmer, summer’s a little wetter? We’ve heard of extreme weather conditions in some far corners of the globe but unless you’ve been planning a trip there, it’s unlikely to affect our everyday lives. But behind supermarkets sliding doors lurks a real peril, one directly impacting Britons at their most vulnerable part, our Achilles heel, our pockets. As crop production is jeopardised, already inflated prices are set to rise, correlating with the environmental changes induced by human pollution (Lobell, 2007).

Figure 1. A familiar slight, well stocked fruit and veg for public consumption. But for how long? (WordShore (flickr), 2016)
Figure 1. A familiar slight, well stocked fruit and veg for public consumption. But for how long? (WordShore (flickr), 2016)

Food security is perhaps the most important commodity provided by the planet. At a glance the effects of climate change, seem on the whole, to be exactly what farmers are looking for in terms of improving yield from their crops. It’s wet, hot, there’s more CO2, more decomposition and available nutrients, just what plants need right? But this is not always the case, although higher CO2 levels does stimulate plant growth, it is counteracted by the increase in temperature and ozone, a molecule with harmful effects on plant tissue(Hogsett, et al 1997). Warming decreases the quality of the crops produced, grains are less dense and seeds contain less oil, as well as favouring growth and proliferation of weeds into new areas, due to the differences in how they photosynthesise (Fuhrer, 2003. Martre, 2017).

Figure 2. The graph from DEFRA (Department for Environmental Food and Rural Affairs) shows billions of pounds worth of imported food, especially fruit and vegetables. (Source: DEFRA Food Statistics Pocketbook 2016)
Figure 2. This graph from DEFRA (Department for Environmental Food and Rural Affairs) shows billions of pounds worth of imported food, especially fruit and vegetables. (Source: DEFRA Food Statistics Pocketbook 2016)

It is no secret that as a nation we currently import almost half of our food and animal feed from overseas (Ruiter et al 2015). In response to huge population increases of 3 Million on average every decade since the baby boomers of the 50s(Humby, 2016) and market for year-round exotic produce. But tropical regions are likely to suffer much more, even a slight temperature increase interfering with developmental and growth processes beyond already stretched thresholds, meaning production in these areas will fall hugely(Challinor, 2008). Excess precipitation, effectively drowning roots and drought adding another uncertain dimension to the mix(Amedie, 2013).

“[In staples like wheat, maize and barley] warming has resulted in annual combined losses of $5 billion per year, as of 2002” -Lobell, 2007

Environmental change is going to effect everyone in one way or another, we rely on plants for food, clothing, oxygen, medicine and much more. Prices of everyday commodities reflect the quantity and quality of production processes. The result is innumerable aspects of our lives being changed, in some way by the unsustainable practices we are complicit to on a daily basis(Lepetz et al., 2009).

Research into genetic modification of crop plants provides some relief in the challenges ahead, improving crop plant coping mechanisms and yield potential (Martre et al 2017), as well as a decrease in the consumption of animal products due to their high carbon footprint and inefficiency(Ruiter et al 2015). For now it will be a 4p increase in a farmhouse loaf and 10p extra for sunflower oil, but immediate action is necessary to prevent a large-scale food shortage in the near future.

[500 words]

References:

Amedie, F.A., (2013). Impacts of Climate Change on Plant Growth, Ecosystem Services, Biodiversity, and Potential Adaptation Measure. , pp.1–61.

Challinor, A.J. & Wheeler, T.R., (2008). Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agricultural and Forest Meteorology, 148(3), pp.343–356.

Fuhrer, J., (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97(1–3), pp.1–20.

Hogsett, W.E., J.E. Weber, D. Tingey, A. Herstrom, E.H. Lee and J.A. Laurence. (1997). An approach for characterizing tropospheric ozone risk to forests. Environmental Management 21:105-120.

Humby, P. (2016). Overview of the UK population: February 2016. [ONLINE] Available at: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/february2016. [Accessed 13 March 2017].

Lepetz V., Massot, M. & Schmeller, D.S., & Clobert, J., (2009). Biodiversity monitoring: some proposals to adequately study species’ responses to climate change. Biodiversity and Conservation 18, 3185- 3203

Lobell, D.B. & Field, C.B., (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), p.14002.

Martre, P., Yin, X. & Ewert, F., (2017). Modeling crops from genotype to phenotype in a changing climate. Field Crops Research, 202, pp.1–4. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0378429017300242.

Ruiter, H. de et al., (2015). Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. Journal of The Royal Society Interface, 13(114). Available at: http://rsif.royalsocietypublishing.org/content/13/114/20151001.abstract.

WordShore (flickr), (2016), Fruit (WordShore)[ONLINE]. Available at: https://hiveminer.com/Tags/hebrides,solas [Accessed 15 March 2017].





It’s getting hot in here! Can plants handle global warming?

Looking at the potential future impacts of climate change on global plant life                                     By Catherine Savage, University of Southampton student


The human race is turning over a new leaf – but not in a good way.

As we enter a new era, the Anthropocene, what will be the fate for plant life on earth?

plant
Source: Better globe AS, Copyright © 2017.

 

Everyone knows what climate change is, everyone knows that it is a current hot topic, but does everyone know what is happening to our plants because of it?

Global temperatures have risen 0.9 degrees throughout the last century (IPCC, 2013). This is predicted to rise by 4 degrees before 2100 (Thuiller, 2007).  A shocking reality to grasp, yet global temperature change is only one aspect encompassed in the concept of climate change.  What about changes in rainfall? Ice sheet melting? Sea level rise?

So, what are the underlying causes of climate change? Out of the greenhouse gases, carbon dioxide contributes the most to global warming at 65%. Current carbon dioxide concentration in the atmosphere is 387ppm, exceeding the safe level of 350ppm (Hansen et al., 2015). This has been heightened by fossil fuel burning and land-use change. The extra CO2 increases the greenhouse effect, resulting in trapped heat in the atmosphere which causes warming of the planet (Oktyabrskiy, 2016). For plants, this could either be a blessing or a curse. 

 

Plate 2. The world map showing projected daily temperatures in July by 2100, under predicted carbon dioxide levels of 935ppm (Gray, 2015).
Plate 1. The world map showing projected daily temperatures in July by 2100, under predicted carbon dioxide levels of 935ppm (Gray, 2015).

 

The good…

Climate change may be beneficial for plants:

  • Enhanced CO2 can increase the photosynthetic rate of plants, which could balance the effect of temperature increases (Thuiller, 2007).
  • With warmer soils, the decomposition rate of organic matter will increase, allowing plants a higher mineral and nutrient availability.
  • Growing seasons for crops may be extended and we could witness an improved agricultural productivity (Brown et al., 2016).

 

The bad…

However, it would be reckless to keep adding CO2 to the atmosphere. Too much of a good thing can be a bad thing right? Once you increase one substance, plants need to increase the rest too! Plants will be incapable of meeting these new requirements.

Changes in rainfall patterns and temperatures can further exacerbate abiotic stresses such as (Naithani, 2016):

  • Drought
  • Waterlogged soils
  • Saltwater inversion
  • Metal contamination

 

These impacts and more make it hard for plants to thrive, with the overarching impact of stunted growth (Worland, 2015).

Plate 2. The invasive Bromus tectorum, a species of the genum Bromus. It is known as the drooping brome or cheat grass.
Plate 2. The invasive Bromus tectorum, a species of the genum Bromus. It is known as the drooping brome or cheat grass. (Source: www.biology.csusb.edu)

Plus, non-native plant species may cross frontiers as conditions become more suitable, out-competing native plants (Thuiller, 2007; Smith et al., 2016; Walter et al., 2002).

The species of long grass, Bromus tectorum, has risen above native plant species in western North America due to being more suited to changes in the wet seasons (Smith et al., 2000).

The ugly…

The human race is a selfish species, perhaps the only way to kick people into action is to present the fact that no plants means no food. Crops won’t grow, land will become barren and food insecurity will explode (Worland, 2015). Could climate change wipe out homo sapiens as well as the worlds plants?

On a lighter note, the outlook may seem dire, but it is not too late for change. As the UN Secretary General Ban Ki-Moon quite rightly stated we are “the last generation that can end climate change”. We can protect and preserve our plants that will provide security to our future generations. Let’s all stop waiting for someone else to solve our problems, and be the change ourselves.

Word count: 499


 

References:

  • IPCC (2013) Climate change: the physical science basis. Working group contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, USA.
  • Thuiller, W. (2007) Biodiversity: climate change and the ecologist.Nature,448(7153), pp.550-552.
  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W. and Medina-Elizade, M. (2015) Global temperature change. Proceedings of the National Academy of Sciences, 103(39), pp.14288-14293.
  • Oktyabrskiy, V.P. (2016) A new opinion of the greenhouse effect.St. Petersburg Polytechnical University Journal: Physics and Mathematics,2(2), pp.124-126.
  • Brown, I., Thompson, D., Bardgett, R., Berry, P., Crute, I., Morison, J., Morecroft, M., Pinnegar, J., Reeder, T., and Topp, K. (2016) UK Climate Change Risk Assessment Evidence Report: Chapter 3, Natural Environment and Natural Assets. Report prepared for the Adaptation Sub-Committee of the Committee on Climate Change, London.
  • Gray, R. (2015) Our scorched Earth in 2100: Nasa maps reveal how climate change will cause temperatures to soar. [online] Available at: http://www.dailymail.co.uk/sciencetech/article-3125113/Earth-2100-Nasa-maps-reveal-world-need-adapt-rising-temperatures-caused-climate-change.html [Accessed 20 March 2017].
  • Naithani, S. (2016) Plants and global climate change: A need for sustainable agriculture. Current Plant Biology,6(2), p.1.
  • Worland, J. (2015) The weird effect climate change will have on plant growth. [Blog]Time. Available at: http://time.com/3916200/climate-change-plant-growth/ [Accessed 6 Mar. 2017].
  • Smith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., Fenstermaker, L.K., Seemann, J.R. and Nowak, R.S., (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem.Nature,408(6808), pp.79-82.
  • Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, J.M., Hoegh-Guldberg, O. and Bairlein, F., (2002) Ecological responses to recent climate change.Nature,416(6879), pp.389-395.

 

Read more:

http://journal.frontiersin.org/article/10.3389/fpls.2016.01123/full 

http://www.open.edu/openlearncreate/mod/oucontent/view.php?id=22627&printable=1





Invasion of the Arctic: How warming temperatures have led to non-native species introduction

Source: Animal Club (2017) Available from: http://elelur.com/mammals/arctic-fox.html
Arctic Fox (Animal Club, 2017.  Available from: http://elelur.com/mammals/arctic-fox.html)

In the eyes of an arctic fox (Alopex lagopus), the temperatures of the tundra provide seamless living conditions. Their adaptations to low temperatures make their arctic habitats suitable for them to hunt, reproduce and in turn survive. However, their survival is threatened by increasing temperatures in the arctic, as it has become more suitable for red foxes (Vulpes Vulpes), too (Killengreen et al., 2007). As the red fox invades the territory of the arctic fox, they undergo competition for land and prey. Although this has not led to a direct decline in arctic fox numbers, it can have further impacts on food webs and community dynamics within the Arctic ecosystem (Gallant et al., 2012).

This is just an example of the new reality in the Arctic; ice is melting due to increased temperatures, and the ecosystem is changing vastly (Serreze et al., 2000). Many of us are aware that global temperatures are rising due to increased greenhouse gas emissions entering the atmosphere, however the rate of temperature change varies across the globe. Where average temperatures have increased by 0.4°C over the past 150 years, it is believed that warming in arctic regions has been almost 3 times higher (IPCC, 2014).

The increased warming creates an environment which is suitable for other, non-native species (Post et al., 2009) – such as the example of the Red Fox. Species towards the South of the Arctic have increased their range, placing pressure on the existing Arctic communities (Root et al., 2003). This ‘invasion’ is not limited to animal species; invasive species in the form of plant communities can also intrude on the ecosystem. For example, the warming has allowed shrub tundra to expand into a wider variety of habitats, and Boreal forest has begun to infringe on the tundra ecosystem (Hinzman et al., 2005).

Source: Animal Photgraphics (2017) Available from: http://alaskaphotographics.photoshelter.com/image/I00009qTaSPpYpaA
Arctic Ground Squirrel. (Animal Photgraphics, 2017. Available from: http://alaskaphotographics.photoshelter.com/image/I00009qTaSPpYpaA)

Another example is of the arctic ground squirrel (Urocitellus parryii), which acts as an ecosystem engineer through its key role in the food web (Wheeler, 2011). The arctic ground squirrel burrows into vegetated land as a mechanism for survival. The burrowing action also changes the composition of the soil, which is important for other ecological processes. However, as boreal, woody forests become more prominent than the easily accessible vegetation, the arctic ground squirrel loses its habitat (Donker & Krebs, 2011).

 

 

 

Figure 1. Predicted global surface temperature change, based on carbon emissions scenarios (IPCC, 2013).
Figure 1. Predicted global surface temperature change, based on carbon emissions scenarios (IPCC, 2013).

The Arctic ecosystem is so complex that the full effects of climate change are not yet understood. This means that the invasive species described above have the potential to interrupt even more ecological processes and food webs. This could also affect human livelihood as we also rely on the stability of the food chain for survival. Furthermore, global warming is expected to cause temperatures to increase even more, dependent on emissions scenarios (Figure 1). This would cause the number of invasive species in both terrestrial and marine ecosystems to increase, threatening the existing communities to an even greater extent.

 

 

References

Donker, S. A., Krebs, C. J. (2011) Habitat Specific Distribution and Abundance of Arctic Ground Squirrels (Urocitellus parryii) in Southwest Yukon. Canadian Journal of Zoology, 89, 570-576.

Gallant, D., Slough, B. G., Reid, D. G., Berteaux, D. (2012) Arctic fox versus red fox in the warming Arctic: four decades of den surveys in north Yukon. Polar Biology, 35(9), 1421-1431.

Hinzman, L. D., Bettez, N. D., Bolton, W. R. et al. (2005) Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Climatic Change, 72(3), 251-298.

IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 pp.

Killengreen, S. T., Ims, R. A., Yoccoz, N. G., Brathen, K. A., Henden, J., Schott, T. (2007) Structural Characteristics of a Low Arctic Tundra Ecosystem and the Retreat of the Arctic Fox. Biological Conservation, 135(4), 459-472.

Post, E., Forchhammer, M. C., Bret-Harte, S. M. et al. (2009) Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science, 325(5946), 1355-1358.

Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., Pounds, J. A. (2003) Fingerprints of Global Warming on Wild Animals and Plants. Nature, 421, 57-60.

Serreze, M. C., Walsh, J. E., Chapin, F. S., III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel. W. C., Morison, J., Zhang, T., Barry, R. G. (2000) Observational Evidence of Recent Change in the Northern High Latitude Environment. Climate Change, 46, 159-207.

Wheeler, H. C. (2011) Arctic Ground Squirrels Urocitellus parryii as Drivers and Indicators of Change in Northern Ecosystems. Mammal Review, 43, 238-255.

[479 Words]